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Abstract Because small molecules can be beneficial or
toxic in biology and the environment, specific and sensitive
detection of small molecules is one of the most important
objectives of the scientific community. In this study, new
signal amplification assays for detection of small molecules
based on Mg2+-dependent DNAzyme were developed. A
cleavable DNA substrate containing a ribonucleotide, the
ends of which were labeled with black hole quencher (BHQ)
and 6-carboxyfluorescein (FAM), was used for fluorescence
detection. When the small molecule of interest is added to
the assay solution, the Mg2+-dependent DNAzyme is acti-
vated, facilitating hybridization between the Mg2+-depen-
dent DNAzyme and the DNA substrate. Binding of the
substrate to the DNAzyme structure results in hydrolytic
cleavage of the substrate in the presence of Mg2+ ions.
The fluorescence signal was amplified by continuous cleav-
age of the enzyme substrate. Ochratoxin A (OTA) and
adenosine triphosphate (ATP) were used as model analytes
in these experiments. This method can detect OTA specifi-
cally with a detection limit as low as 140 pmolL−1 and
detect ATP specifically with a detection limit as low as
13 nmolL−1. Moreover, this method is potentially extend-
able to detection of other small molecules which are able to

dissociate the aptamer from the DNAzyme, leading to acti-
vation of the DNAzyme.
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Introduction

Small molecules can be beneficial or toxic in biology and
the environment, so methods for specific and sensitive de-
tection of small molecules are necessary in many biotech-
nological applications and in medical diagnostics [1, 2].
Therefore, sensors that can detect and quantify small mole-
cules have been developed for a variety of applications
[3–5]. The signal-amplification detection of small molecules
has spurred substantial research effort, and numerous elec-
trical, optical, or microgravimetric amplified small-molecule
sensors have been reported [6–9]. Such sensors have the
advantages that no complicated instrument or sample pre-
treatment are needed. These amplification approaches in-
clude conjugation with enzymes [10], use of catalytic
nanoparticles [11], or use of molecular catalysts for DNA
recognition complexes [12]. Amplified small molecule de-
tection has also been accomplished by use of an autocata-
lytic and catabolic DNAzyme-mediated process [13, 14].
Catalytic nucleic acids (DNAzymes or ribozymes) have
attracted increasing interest as amplifying labels for biosens-
ing [14–17]. The successful selection of catalytic nucleic
acids by use of the systematic evolution of the ligand by
exponential enrichment (SELEX) process has led to the use
of these biocatalysts as amplifying labels in a variety of bio-
sensing designs [16, 18]. The easy synthetic preparation of
DNAzymes, the flexibility in mastering DNAzyme struc-
tures by encoding recognition functions into DNAzyme
sequences, and the reduced nonspecific absorption of these
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nucleic acids turn the DNAzymes into ideal candidates for
the development of bioanalytical devices [19]. Indeed, nu-
merous recent studies have used DNAzymes as amplifying
units for bio-sensing [10, 17, 20]. For example, the horse-
radish peroxidase-mimicking DNAzyme has been exten-
sively used to amplify DNA detection [21, 22] and for the
specific amplified sensing of ions [19].

In this paper, we report the protein-free and autocatalytic
detection of small molecules by using the Mg2+-dependent
DNAzyme as a biocatalyst. At the wavelength of excitation
of 6-carboxyfluorescein (FAM), the fluorescence of the
FAM label at one end of the DNA substrate was highly
quenched by black hole quencher (BHQ) attached at the
other end. In the presence of the target molecule, the acti-
vated DNAzyme can continuously cleave the DNA sub-
strate, leading to recovery of the fluorescence of FAM.
Therefore, the target molecule can be detected and the
concentration can be quantified by monitoring the fluores-
cence intensity of FAM. This method, which we introduce
herein, is highly specific and only sensitive to the target
molecule. The detection limits for ochratoxin A (OTA) and
adenosine triphosphate (ATP) on the basis of use of the
corresponding system are 140 pmolL−1 and 13 nmolL−1,
respectively.

Experimental section

Chemicals and materials

Oligonucleotides designed in this study were synthe-
sized by Sangon Biotech (Shanghai, China); the sequen-
ces of all oligonucleotides are listed in Table 1. The
ribonucleotide-containing DNA substrates used were
modified at the 3′ and 5′ ends with the fluorescent
dye 6-carboxyfluorescein (6-FAM) and its quencher
black hole quencher I (BHQ I), respectively. Other
chemicals were of reagent grade and were used without
further purification. Solutions were prepared in deion-
ized water processed with a Milli-Q ultra-high-purity-
water system (Millipore, Bedford, MA, USA).

Instrumentation

A Cary 500 Scan UV–visible spectrophotometer (Varian,
USA) was used to quantify the oligonucleotides.
Fluorescence intensities were recorded on a Fluoromax-
4 spectrofluorimeter (Horiba Jobin Yvon, France).
Emission spectra were recorded in the wavelength range
500–640 nm upon excitation at 492 nm. The slit widths
for excitation and emission were set at 2.5 and 15 nm,
respectively. All measurements were performed at room
temperature unless stated otherwise.

Fluorescence detection of OTA

DNA stock solution was prepared by dissolving oligo-
nucleotides in OTA binding buffer (10 mmolL−1 Tris-
HCl, 120 mmolL−1 NaCl, 5 mmolL−1 KCl, 20 mmol
L−1 CaCl2, and 20 mmolL−1 MgCl2, pH8.5) and was
stored at 4 °C before use. OTA aptamer (DNA 1)
solution (100 μL) of concentration 250 nmolL−1 was
mixed, in tubes, with 100 μL OTA binding buffer con-
taining different concentrations of OTA, followed by
incubation at room temperature for 30 min. Then,
100 μL 250 nmol L−1H1 (DNA 2) solution and
100 μL 250 nmolL−1H2 (DNA 3) solution were added,
and left to settle for another 30 min. BQF substrate
(1 μmolL−1, 100 μL) was then added, and the mixture
was kept at room temperature in the dark for another
1 h. The fluorescence intensity was then measured.

Fluorescence detection of ATP

All assay conditions were the same as those used for the
detection of OTA, except that the OTA aptamer (DNA 1)
was replaced by ATP aptamer (DNA 4), the H1 (DNA 2) and
H2 (DNA 3) for OTAwere replaced by the H1 (DNA 5) and
H2 (DNA 6) for ATP, respectively (Table 1), and the OTA
binding buffer was replaced by ATP binding buffer
(50 mmolL−1 Tris-HCl, 140 mmolL−1 NaCl, 5 mmolL−1

KCl, 20 mmolL−1 MgCl2, pH7.5).

Table 1 DNA sequences used
in this study

F, FAM fluorophore; Q, black
hole quencher 1; rA, adenine
ribonucleotide

Name sequence (5′——3′)

DNA 1 5′GATCGGGTGTGGGTGGCGTAAAGGGAGCATCGGACA3′

DNA 2 5′GATATCAGCGATCTTATGTCCGATGCTCCCTT3′

DNA 3 5′ATCGGACAAAGCACCCATGTTACTCT3′

DNA 4 5′ACCTGGGGGAGTATTGCGGAGGAAGGT3′

DNA 5 5′GATATCAGCGATCTTAACCTTCCTCCGCAATA3′

DNA 6 5′GCGGAGGAAGGTAAGCACCCATGTTACTCT3′

BQF substrate 5′Q-AGAGTATrAGGATATC-F3′
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Application

We used red wine and serum samples to confirm the feasi-
bility of this sensor for analysis of real-world samples.
Buffer solutions containing 1 % red wine or serum were
spiked with different concentration of OTA or ATP and the
samples were analyzed as described above.

Results and discussion

Design strategy for detection of small molecules
by use of Mg2+-dependent DNAzyme

Scheme 1 illustrates the sensing strategy for detection of
small molecules by use of Mg2+-dependent DNAzyme. The
DNAzyme is split into two parts, H1 and H2. H1 and H2 both
contain two domains. Domain I in H1 and domain II in H2

are complementary DNA sequences which can hybridize
into duplexes in the absence of the small molecule’s
aptamer. Because part of small molecule’s aptamer is com-
plementary to domain I in the H1 sequence, the aptamer can
compete with H2 for hybridization with H1. Upon addition
of the small molecule into the solution containing the
aptamer, the aptamer folds into a compact structure and
loses the capability to compete with H2 for hybridization
with H1. Hybridization between H1 and H2 brings domain
III in H1 and domain IV in H2 together to form a functional
DNAzyme, which can continuously cleave ribonucleotide-
containing DNA substrate [20]. Binding of the substrate to
the DNAzyme structure results in hydrolytic cleavage of
the substrate in the presence of Mg2+ ions [13]. The limited
stability of the cleaved substrate and the DNAzyme duplex
leads to release of the product units from the DNAzyme
structure and enables continuous scission of the substrate
[16]. As a result of this scission of the substrate the FAM

H1 H2

Aptamer

Target
I II

III IV

H1 H2

Mg2+

BQF substrate 

No target

H2

H1

Aptamer

BQF substrate 

H1 H2

Scheme 1 Illustration of signal-amplification assay for small-mole-
cule detection based on Mg2+-dependent DNAzyme. In the presence of
the target, domain I of H1 hybridizes with domain II of H2 and forms
Mg2+-dependent DNAzyme, which can continuously cleave ribonucle-
otide-containing DNA substrate, with the result that the FAM moves

far away from BHQ, leading to generation of greater fluorescence
intensity. In the absence of the target, the aptamer will partly hybridize
with H1, which will prevent formation of the Mg2+-dependent DNA-
zyme and thus the ribonucleotide-containing DNA is not cleaved
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a bFig. 1 a Fluorescence results
for the Mg2+-dependent
DNAzyme amplified detection
strategy with different
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peak maximum of the
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plotted as a function of
concentration of OTA. The
inset in b is the linear part of the
plot in b. Error bars were
obtained from three
experiments
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moves far away from BHQ, leading to generation of greater
fluorescence intensity, thus providing the optical readout sig-
nal for sensing of the analyte. On the basis of this design, we
have developed a signal amplification assay for detection of
small molecules. For each small molecule target, the detailed
DNA sequence is different whereas the domains in H1 and H2

used to form the DNAzyme are fixed.

Analytical performance of OTA detection

To prove the feasibility of the proposed method, we started
with detection of ochratoxin A (OTA). OTA, a toxin pro-
duced by Aspergillus ochraceus and Penicillium verruco-
sum, is one of the most abundant food-contaminating
mycotoxins in the world [23, 24]. It has been classified by
the International Agency for Research on Cancer (IARC) as
a possible human carcinogen [25, 26]. With recognition of

its severe toxic effect, substantial effort has been devoted to
developing simple sensing devices for detection of this
fungal toxin [27–30]. In our previous work, we designed a
sensing strategy based on single-walled carbon nanotubes
and aptamers for detection of OTA [23] without signal
amplification. To improve the sensitivity of OTA detection,
we introduced this signal-amplification strategy based on
Mg2+-dependent DNAzyme. In this signal-amplification
strategy, an aptamer specific for OTA (DNA 1) was used.
This aptamer can fold into an antiparallel G-quadruplex
structure upon exposure to OTA [23]. Formation of this
antiparallel G-quadruplex structure prevents hybridization
between DNA 1 and domain I of H1. As a result the
supramolecular structure of the DNAzyme (subunits H1

and H2) was formed and the substrate was cleaved, produc-
ing strong fluorescence.

Premixing of DNA 1 and OTA is important in this study,
because it enables sufficient freedom of interaction between
aptamer and OTA. As illustrated in Fig. 1a, fluorescence
measurement showed that the fluorescence intensity in the
solution increased with increasing concentration of OTA.
The calibration curve for fluorescence intensity as a function
of concentration from 200 pmol L−1 to 1000 nmolL−1 was
plotted (Fig. 1b). The limit of detection (LOD), defined as
the concentration corresponding to a fluorescence signal
equal to three times the standard deviation of blank without
OTA, was calculated to be 140 pmol L−1. The fluorescence
response was a linear function of the logarithm of OTA
concentration between 200 pmol L−1 and 50 nmolL−1 (inset
in Fig. 1b). Compared with another recently developed
sensor for detection of OTA on the basis of a traditional
fluorophore quencher [31], this signal-amplification assay
greatly enhanced the sensitivity of OTA detection—the
LOD was reduced by more than a factor of 14.

To determine the specificity of this method, we tested the
method with different structural analogues. N-Acetyl-L-phe-
nylalanine (NAP), the molecular structure of which includes
one part of OTA, was used. Warfarin and OTA are similar in
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Fig. 2 Selectivity of the sensor for OTA (100 nmolL−1) compared
with other structural analogues (1 μmolL−1). OTA, ochratoxin A; OTB,
ochratoxin B; NAP, N-acetyl-L-phenylalanine. Error bars were
obtained from three experiments
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that that they occupy the same binding site in human serum
albumin. Ochratoxin B, which lacks the chlorine atom in the
isocoumarin ring is a structural analogue of OTA. As shown
in Fig. 2 (column 5), addition of the target molecule (OTA)
at a concentration of 100 nmolL−1 induced a dramatic
increase in fluorescence whereas other analogues at concen-
trations of 1 μmolL−1 (columns 2–4) did not induce appar-
ent fluorescence increase. Therefore, we can conclude that
this aptamer was highly specific for OTA.

Analytical performance of ATP detection

To exploit the extendable applicability of our approach, we
modified the assay for ATP detection. ATP is the major
energy carrier of all living cells and is of crucial importance
in the regulation of cellular metabolism and biochemical
pathways in every organism [32–34]. As a consequence,
ATP concentrations are tightly regulated under normal con-
ditions. Aberrant ATP levels have been associated with
particular diseases, for example angiocardiopathy, which
results from excessive production of ATP by creatine kinase
[35]. Therefore, accurate detection and quantification of
ATP is an important objective for both biochemical and
clinical applications. In this signal-amplification strategy,
an aptamer specific for ATP (DNA 4) was used. This folds
to form an antiparallel G-quadruplex structure upon expo-
sure to ATP [35]. Similar to OTA detection, premixing of
DNA 4 and ATP was important to enable sufficient freedom
of interaction between aptamer and ATP. For the sensitivity
study, different concentrations of ATP solution were inves-
tigated. Figure 3a shows the fluorescence emission spectra
in the presence of ATP from 0.01 to 10 μmolL−1 in Tris-HCl

buffer solution. With increasing concentration of ATP, the
fluorescence intensity was clearly enhanced. Figure 3b
shows the relationship between fluorescence intensity and
concentration of ATP. The inset shows the calibration curve
for quantitative analysis of ATP. The fluorescence response
was a linear function of the logarithm of ATP concentration
in the range 10 nmolL−1 and 2 μmolL−1 (inset in Fig. 3b),
and the detection limit was 13 nmolL−1. Importantly, as
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Fig. 5 Peak maxima of the fluorescence spectra of buffer solutions
containing 1 % red wine spiked with different concentrations of OTA
under the conditions of the amplified detection strategy. The inset
shows fluorescence response plotted against OTA concentration. Error
bars were obtained from three experiments
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shown in Fig. 4, the assay was quite selective. Addition of
the target molecule (ATP) at a concentration of 5 μmolL−1

induced a dramatic fluorescence increase; however, no
such fluorescence increase was observed when ATP was
replaced by other nucleoside triphosphates, for example
CTP, GTP and UTP. Addition of the other nucleoside
triphosphates at concentrations of 50 μmolL−1 (columns
2–4) did not induce any apparent fluorescence increase;
therefore, we can conclude that the assay was quite
selective.

Practicability of Mg2+-dependent DNAzyme based sensing

To investigate the sensors’ potential applications for
analysis of real samples, the sensors were used to detect
OTA in red wine and ATP in human serum. Calibration
curves were obtained for 1 % red wine (Fig. 5) and
1 % serum (Fig. 6) containing different concentrations
of analyte (see also Electronic Supplementary Material).
Detection limits were 150 pmolL−1 for OTA and
14 nmolL−1 for ATP, which are close to those obtained
in buffer. These results suggest successful detection of
OTA and ATP in real samples can be achieved by use
of the Mg2+-dependent DNAzyme sensors.

Conclusion

We have developed a protein-free signal-amplification sens-
ing system based on the Mg2+-dependent DNAzyme. The
DNAzyme was split into two parts, one of which was partly
matched with aptamer to prevent assembly of the catalyti-
cally active DNAzyme. Addition of the target molecule
enabled hybridization of these two parts and facilitated
assembly of the DNAzyme, and the fluorescence signal
was amplified by continuous enzyme cleavage. Compared
with other sensors [31, 36–38], this DNAzyme system is
able to continuously cleave ribonucleotide-containing DNA
substrate and the fluorescence intensity is greatly enhanced.
In addition to OTA and ATP, this DNAzyme system is
universal for other small molecules. It can be foreseen that
the simple approach demonstrated here could be modified
and coupled with other various detection devices. It might
also be useful for high-throughput and paralleled analysis of
multiple targets.
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